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Abstract

The problem of navigating a bipedal robot to a desired destination in various environments is very important.
However, it is very difficult to solve the navigation problem in real time because the computation time is very long
due to the nature of the biped robot having a high degree of freedom. In order to overcome this, many scientists
suggested navigation through the footstep planning. Usually footstep planning use the shortest distance or angles
as the objective function based on the A * algorithm. Recently, the energy required for human walking, which is
widely used in human dynamics, approximated by a polynomial function is proposed as a better cost function that
explains the bipedal robot’s movement. In addition, for the real time navigation, using the action set of the A *
algorithm not fixed, but the number changing according to the situation, so that the computation time does not
increase much and the methods of considering the collision with the external environment are suggested as a
practical method. In this thesis, polynomial function approximating the energy required for human walking is
adopted as a cost function, and heuristic function considering the angular difference between the robot and the
destination which is not shown in the previous studies is newly proposed and proved. In addition, a new method to
integrate the adaptive behavior set and energy related to human walking is proposed. Furthermore, efficient
collision avoidance method and a method to reduce the local minimum problem is proposed in this framework.
Finally, footstep planning algorithm with all of these features into the mapping algorithm and the walking algorithm
to solve the navigation problem is validated with simulation and real robot.

Keywords Navigation, Footstep planning, Humanoid robot, Heuristic function, Human inspired energy

approximation, Adaptive action set, Local minimum problem, Collision avoidance
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Chapter 1. Introduction

1.1. Motivation and Brief History of Footstep Planning

Since development of humanoid robots, it has been used in various fields by utilizing its many DOF (degree of
freedom) system. Especially in terms of traversability, it has a big advantage for availability to step over or step
on an obstacle, than traditional wheeled robots. However, in the same reason, having complex system makes
motion generation and control much more complicated. Furthermore, navigation problem, which moves humanoid
from point to point with given environments, has been viewed as a major challenge in terms of computational
complexity.

In this reason, at 2001 James Kuffner proposed a simplified navigation method using the hybrid dynamics
property of a humanoid from a discrete change at every footstep, which plans only the footholds and named it as
“Footstep Planning” [1]. In this method, footsteps are planned at a reduced search space first and then, sufficient
COM trajectory planning and walking control is done. Including Kuffner, Chestnutt(2003,2005) [2][3],
Gutmann(2005) [4], Perin(2011) [5], Hournung(2012) [6], Stumpf(2014) [7], Kanoulas(2016) [8] used discrete
search based navigation algorithms like A*[9] and RRT[10]. These methods’ complexity quickly increases with
the size of the transition model, in this reason above methods has fixed step models and stepping capabilities are
limited. However, in real time application to the real robot it still has computational advantage than fully
continuous methods like Kanoun (2011) [12], Deits (2014) [13]. So in this thesis, A* is selected as a base
algorithm which has more optimality than RRT and computationally faster than continuous methods.

Before moving on, brief explanation of A* algorithm and A* based footstep planning will be done.

-O..‘
‘0
e % o

Figure 1.1 Body based navigation and Footstep based navigation
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1.2. Fundamentals

A¥* algorithm was first introduced as part of robot Shakey project [9]. Since development, itself or various
variants has been used in many path-planning problems. In this section, brief explanation of A* algorithm and its
2d example will be introduced and also Footstep planning method which is based on A* algorithm will be

explained.

1.2.1. A* algorithm

A* algorithm starts from a “start node’ and aims to find a path to the given ‘goal node’ having the smallest cost.
Cost can be defined as minimal distance or smallest time or energy functions, etc. It finds a path by a sequential
order while maintaining a tree of states ‘s’ originating from start node by expanding fixed action pairs ‘a’ at one
of'the tree’s edge. A* algorithm selects one edge at a time which minimizes priority function ‘f(s)’, which is sum
of cost to come ‘g(s)’ and heuristic cost to go ‘h(s)’, until it meets the termination condition. Cost to come g(s) is
a summation of each action costs defined by the user to reach the state s from start node. It can also be represented
as Equation (1), where g(Spefore) 1S cost to come of the state right above in the tree and c(Spefore,S) 1S cOSt
needed to extend to state s from state Spefore by certain action. Heuristic cost to go h(s) is an estimation of the
cheapest path from state s to goal node. As proven in [11], if the heuristic cost to go h(s) is admissible (never
overestimates the actual cost to the goal like Equation (3), A* algorithm gives the optimal path about given action

sets and given costs.

f(s) = g(s) + h(s) (1)
g(s) = g(sbefore) + C(Sbefore' s) 2)
h(s) < actual cost 3)

For example, in a 2d grid space, start node, goal node, state s, action a, g(s), h(s), f(s) can be represented like
Figure 1.2. In this example, each action cost c(Spefore,S) 15 equally 1 and if it goes to an obstacle (orange: weak,
red: strong) it gets additional penalty cost (orange: 1, red: 2). Cost to come g(s) in this example is 2 because it
came from the start node by 2 actions. Heuristic cost h(s) is 6 because it can reach to the goal in 6 actions if there
is no obstacle. It is desirable to make heuristic function considering obstacles, but practically it is very hard to
make computationally light heuristic function that meets admissibility condition in every situation. In this reason,

most of the A* algorithms use minimum costs without considering obstacles.
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Cost to come Priority
g2(s5)=2 1(s) = g(s) + h(s)
+ Heuristic
| cost-to-go
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L1 ]

Figure 1.2 A* algorithm explanation image [32]

1.2.2. A* footstep planning

Based on A* algorithm, A* footstep planning has similar sequence. Main components (start node, goal node,
state, tree, action set, cost to come g(s), heuristic cost to go h(s), priority cost f(s)) are same with A* algorithm.
Except some expressions are different. Since humanoid has two feet and walking is done in a left-foot to right-
foot or right-foot to left-foot swing, state ‘s’ can be represented as stance foot position and relative angle about x
axis of global fixed coordinate system and foot state(left or right). Action set ‘A’ is a fixed combination of actions
‘a’, which is represented as delta position and delta angle about previous state. Figure 1.3 describes the feature of
action and action set. Also, action set ‘A’ is mirrored for the opposite stance foot. These actions are expanded as
a new search state candidate if it is feasible (not colliding with environment or itself or fits in a steppable region).

*State s = (x, y, 6, foot state)

*Action a = (Ax, Ay, AB)

*Fixed set of footstep actions A= {a,, a,,..., a,}

As you can see in Figure 1.4 footstep planning occurs similarly as an A* algorithm. It expands actions from the
start node to the goal node by priority of priority function value of search tree’s edge states. Difference is that

action set differs by the foot state.

A6

Figure 1.3 Action and action set for footstep planning
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Figure 1.4 A* based footstep planning sequence

Including the basic algorithm of A* footstep planning, it has some key features to concentrate.
® Setting reliable action cost function and heuristic cost function.
Usually action cost function is defined like Equation (4) as Euclidean distance or additional cost about

angle and constant step cost.

c(s,s") = JAx2+ Ay? or /Ax? + Ay? + |AO| + const (4)

Also usually heuristic cost function is defined like Equation (5) as Euclidean distance from state to goal

node because of admissibility condition.

h(s") = \/(Xgoal = x5)* + Vgoar — Vs1)? (5)

It is available to get a possible footstep plan using these cost functions. But since it does not properly

express the energy consumption of humanoid, the result may be energy inefficient footstep plans.

Goal Al
o

Figure 1.5 Action cost function and heuristic cost function

A-
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Figure 1.6 Effect of number of fixed actions

® Total number and variety of fixed actions.

Using small number of fixed actions makes branching factor (factor about how much the search tree grows)
low but feasibility and coverage of space bad. Contrary, using large number of fixed actions makes feasibility and
coverage of space good but branching factor big. In this reason, as your computation power allows, setting the
number of fixed action as large as possible is good.

® Feasibility checking methods.

To consider the feasibility of the footstep, it is desired to check with the environment data if a collision occurs
or if the ground is too rough to step. Figure 1.7 describes such situations. For more realistic plan, it should consider

not only foothold feasibility, but also body feasibility.

Small Obstacle

i
A

Figure 1.7 Left figure explains the feasibility about small obstacles and rough ground. Right figure explains the
feasibility about big obstacles

® Dealing with local minima problem.

It is very hard to define a heuristic function that considers obstacle perfectly. Also, since humanoid is not
omnidirectional, it has infinite cases of angles per each position of the map. These two reasons make planning

difficult when big obstacle is between robot and the goal. Figure 1.8 explains the situations like it.

-5-
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Figure 1.8 Example of local minimum problem

In the point of view of above features, scientists tried to improve each of them.

1.3. Related Research

For the cost functions, Huang [ 14] tried to model the COT (cost of transportation, defined as Equation (6)) with
polynomial functions for the action cost function. It brought the idea of function models from the human research
papers and validated their model by simulation program. But it used COT as the cost function which made it
impossible to model the energy consumption of walking on the spot situations. Additionally it used just Euclidean
distance as the heuristic function. It meets the admissibility condition but since the unit is different, it was too

small than the action costs which made the search time very long.

coTe—=n"____ ©)
m- g - distance
Forward walking cost comparisog 17
s as
a g . i
-] ER :’ i E
2 o 3 a
m g 2 Ed £
5
1 r B s P =
gL s g™ ; B . Z
ofll m m m F i i o g L
g otV @ P2 2357
-1 8o 25
D 1.2 3 ‘& “02 o4 08 o8 1
Walking with step length form 0.2m to 0.9m Step Length (meter) P
Tuming cost comparison 1 Slope a = 20° Slope a = 257
-
3
3 8 L
2 £
! s ® W 3 g PR Y3~
MmMae ¥y v 0 & e &
. A % B g2 ] B
0 mom oW om F = x 8
3 &
s 8 2
-+ -3 =2 -1 o o 50 100
Tuming exampie form 1 to 00 degraes Angle (degres)

Figure 1.9 Cost function related to energy and its effects. Left figure is Huang [14]’s energy functions validated
by dynamic simulations. Right figure is Brandao [16]’s algorithm effects in slope and slippery terrain
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Similarly, Brandao[16] let COM energy as action costs which is learned from machine learning with dynamic
simulator and heuristic cost as Euclidean distance and weight multiplied with minimal COT. It showed its effect
on slippery ground and inclined ground. However, it did not consider the angle difference towards the goal as
heuristic function parts.

For the action set number problem, Chestnutt[17] tried a method using ‘adaptive action set’. In usual situations,
it uses appropriate fixed number of action sets, but when those sets make collision with the environment,
adaptively expand more number of action sets. Although it could not solve perfectly the issue of setting the number
of action sets, it proposed a better solution than just setting only fixed number of action set. Similarly,
Karkowski[ 18] proposed adaptive action set method, which is almost same in result, but sequentially different.
This method works exactly opposite to the Chestnutt’s method. For each interval of angles, check if farthest
footstep is available, if not, rotate gradually until available, if not, pull the footstep more near and keep on this
strategy for each interval. Finally, each interval has only one possible footsteps so total number of actions are

small which makes branching factor smaller than big action set.

For the feasibility checking problem, the most common method is called “bounding box method” [22]. It plans

Figure 1.10 Karkowski’s Adaptive action set [18]

a 2d continuous motion of big box that contains the whole robot, and then a sequence of footsteps that can follow
the box trajectory is made. However, it cannot consider the very important advantage of humanoid that it can step
over or step on an obstacle. Another method is single swept volume method [5]. Based on precomputed body
approximations at discrete configurations, they smooth the determined half step combination to get an
approximately dynamic movement. Since they approximated the robot movement in high dimensional search
space, they had to take into account a random solution using an RRT method instead of A*. These methods made
their process faster, but it still needs about 2.5 seconds to make a plan. In addition, they do not use onboard vision
sensor. Instead, they use known environment and motion capture device to get localization data.

For the local minimum problem, most of the scientists tried to fusion 2d mobile a* algorithm with A* footstep
planning. Chestnutt [19] and Hournung [20] proposed methods to use 2d mobile path as heuristic function of
footstep planning. However, it could not consider the ability of stepping over of stepping on an obstacle. LOLA

team [21] tried to utilize stepping over or stepping on ability, but it did not consider the energy point of view costs.



1.4. Research Objectives

Energy related costs and adaptive action sets are definitely proper research direction for Humanoid A* footstep
planning. But there are no full framework that integrates energy related cost functions and adaptive action sets
properly, also in the feasibility and local minimum problem points of view, real time application to the real robot
is still a challenging problem. Therefore, in this paper, we propose a full framework that integrates energy related
cost functions and adaptive actions sets while considering angle difference towards the goal. Furthermore,
efficient multilevel feasibility checking method and tricks to reduce local minimum problem is introduced. Finally,

integrating framework for ‘Mapping’ and ‘Footstep Planner’ and ‘Walking Algorithm’ will be proposed.

1.5. Thesis Overview and Assumptions

In the rest of the thesis, we will introduce and show results in simulation and real robot the full framework of
our footstep planner integrated with mapping algorithm and walking controller. Chapter 2 describes the full
footstep planner framework, which uses energy related cost functions, adaptive action sets, dual-level feasibility
checker and local minima reducer. Chapter 3 describes Integration of mapping, planning, walking. Chapter 4
shows the results on the simulator Gazebo. Chapter 5 shows the results on the real size humanoid ‘Gazelle’.
Finally, chapter 6 for the conclusion of this paper.

Throughout the thesis, some assumptions are made to focus on the planner itself.

® Seclf-collision, kinematic constraints, dynamic stability constraints are approximated by step length, width,

angle constraints.

® Step time and step height are constant.



Chapter 2. Footstep Planning with Energy Related Cost Functions
and Adaptive Action Set

2.1. Energy related cost functions and heuristic functions

2.1.1. Action cost function

As Huang proposed [14], Humanoid energy consumption E;, can be approximated as a polynomial functions
of step length, step width, step angle which is defined as Figure 2.1. With an assumption that it can be separated

as Equation (7)

Eip = Elength + Ewiaen + Eangle (7

— Ay
— : Ax 1al |Ayswingbefm.e + IAyswing|
Y 2 length = >
’Axswin + |AX ; |
) dbefor swing
w 2 width = efm;
Stance
|A95Wingbefore + |A95Win9|
6 £ angle = >
Figure 2.1 variable definition for energy function
Each Energy functions can now be defined as Equation (8)
Elength = mg(Al4 +Bl+C), Ewian = mg(DWZ): Eangle = mg(ng) (®)

In this equation, A, B, C, D, F are model parameters which is defined by the user. Huang used Ejength, Ewidtn
equations from human dynamics literatures, but E,ngle is just defined as above. In order to give more physical

meaning to this function, one assumption is made as below.
*To reduce discontinuity in acceleration profile, trajectory is planned with trigonometric function.
While satisfying this assumption, since our system has constant step time, and changing foot yaw angle is

dominated by hip yaw joint, energy consumed for changing certain yaw angle in given constant step time is

proportional to the square of that certain yaw angle. This is proved in Appendix A.



Furthermore, since we need to consider the view angle of vision sensor, we add an additional penalty costs for

sidestep like Equation (9).
if sidestep > Esq0 =mg(10*C)

else - Eg4e=0 )
Now the final action cost function c(s’,s) is as Equation (10).
C(S' s, Sbef) = Elength + Eyigen + Eangle + Eige (10)

2.1.2. Heuristic cost

To have higher heuristic cost value while meeting the admissibility condition, Brandao proposed [16] to use
Euclidean distance multiplied with minimum COT value. COT value is a sort of energy efficiency in the travel
distance point of view and defined as Equation (11). Finally, proposed equation for heuristic function is as h(s) in
Equation (12).

Elength + Ewidth + Eangle + Eside
CoT = p— (1
9

a = minimum COT for straight walking

Adgoq = Euclidean distance from robot to goal

(12)
h(s) =a-m-g-Adgon

Now Euclidean distance has become a cost in order of energy and admissible. However, this heuristic function

E cor,
length length
18000 o %

16000 /- 2

14000 / 2y A
\
201
12000 \

energylJ
g
8
\\
CcoT
5 &

01 02 03 04 05 06 07 08 09 1 01 02 03
length{m)

04 05 06 07 08 09 1
length(m)

Figure 2.2 Example of Ejepgy, and COTjengen

does not consider the effect of angle difference. Real robot must rotate its body to take an energy efficient step
towards the goal like Equation (13). Since our action cost function has a term E,,g1e, Which is only about angle
difference in the assumption of independency, we can form the problem as how much angle difference should be
reduced at each step when parameter ‘F’ is positive number (since it is physical parameter). Some possible solution
may be like Figure 2.3. To mathematically prove the optimal reducing method, this problem is formulated and

solved with proof as Figure 2.4. Since the method for dividing equally the desired angle is optimal, it is admissible
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about the given cost of actions while considering angle differences.

h(s)=a-m- g- Adgoal + funC(Aegoal) ; Eangle =m-g- (Fez) (13)

Therefore, the final heuristic function is as Equation (14).

m-g-F- (Aegoal)z
N

h(s)=a-m-g-Adgeq + (14)

Estimation of h(s) about angle difference?

qual 2

Go for A8 44 in one step? Go for N steps of

Goal
Goal .
Adyual l

!
cost: m'g'F'(Ag,qnal)z cost: m-g-F-N- ( JO“)Z

* B = straight walking distance for minimum COT(in this paper 0‘2)
* F from Eqngie

N = Ad,quul

Tt number of steps for straight walking to the goal

Figure 2.3 Possible solutions for heuristic functions about angle difference

Problem:
N
min Z a?
@41,az,..,aN.
n=1
subject to:
N
Z a,= AQgDa,
n=1
solution :
di=a,=--=a _Aegoal
1 2 N N
proof:
let A9‘qoal
N
then Z(a —0) = Dyt — DOy =0 (D

N an

Za —Z(c+a —-0? —Z(c +2(a,— 0 +(a,—0?
=c n+22(a,l O +Z(anfc)

n=1

=c’n+ E(an —0)? - from(D

N
— i g 2
a,=c for minimum Z an

n=1

Figure 2.4 Proof of heuristic function considering angle difference
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2.2. Adaptive action set and selecting method: COT

Adaptive action set is necessary for A* footstep planning as explained in section 1.3. In this thesis we will use
this method based on Karkowski’s method [8]. Navigation for humanoid essentially needs
(Axropotr AYrobot» Abropor) fOr robots center movement. Furthermore, in our system, vision sensor has certain field

of view (FOV). So moving backwards is not desirable. In this reason, we chose fixed action subsets as left figure

of Figure 2.5.
i [+ ]

A 3 ~ I

\ / |

'\\ \\‘_‘: f,"f’ //' L
\\\ L\'u.“ ““.“"‘ /////
Action subsets Adaptive actions for each subset

™ \ |/ i

l_'_l

Figure 2.5 Left figure is Action subsets and right figure is example of actions per each subsets

For each subsets, adaptive actions are given like right figure of Figure 2.5. For each subsets we choose one
adaptive action which does not collide or is on a safe region. Next thing to consider is which subset to choose
when there is multiple action available at certain subset. Previous researchers chose the farthest as possible
because their action cost and heuristic cost are about distance values. However, in this thesis those actions are not
sure if it is desirable. Therefore, if we assume no obstacles, and enough footsteps are taken, this problem can be
defined and solved like Figure 2.6 with proofs. So the minimum COT value action should be selected for each

sub action set like Figure 2.7.

Problem:
mAI’n(‘q(.\‘tu[c to goal)) = nz\iln(.q(s, Sgoal))
Assumption: 1) Straight walking towards the goal without obstacle.
2) Step number is large enough that constant step size can represent overall step costs.
solution :
Al = Al that has minimum COT
proof:

i euclidean distance from s to Sgoq
from assumption 1) &2) g(s,Sgoa1) = NEjo,gen (Al) « (N= Al )

let d(s,sg0a) = euclidean distance from s to Sgoa

_ ) Etengtn(Al)
then- NEIHH_&[[II (AI) =d (S, 5//1"1!) =

al
Etengtn (A1) i Elengtn (A1)
d(s, s(,,“,,) ———— has minimum value when ———

has minimum value since d(s, s(,,“,,)is constant as given.
Al ! .

bin

Fromdefinitionof COT £ ————
m- g -distance

Ein

m, g is given constant - minimum COT is equivalent to minimum ————
distance

mAiln(g(sta[e to goal)) - when Al = Alyinimunm cor

Figure 2.6 Proof that adaptive action selection method should be minimum COT value
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Lowest COT action chosen

Figure 2.7 Final adaptive action selection method: minimum COT

Additionally, when state is near the goal node, selecting minimum COT value does not always make the robot
reach the goal position even if there is no obstacle. Figure 2.8(a) is one of the examples of those situations. To
overcome this problem, when robot’s center gets near to the goal for a certain length, stop using adaptive sets but

use full sets like Figure 2.8(b)

() (b)

Figure 2.8 Near goal adaptive action set problem and solution
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2.3. Dual-level efficient feasibility check

E

Figure 2.9 Elevation Map and Traversability Map example

Feasibility avoidance is one of the most important feature in footstep planning. In this thesis, to deal with the
computational problem, feasibility is checked in a grid map space by a dual level height check mechanism. Before
heading on the specific algorithms, grid map values used for checking the feasibility will be introduced. Overall
grid maps are as Figure 2.9. It is originated from grid-map package and Elevation-mapping package (open source
ROS Package developed at ETH) [28]. Specific usage of data structures of these packages and how the values are
calculated will be introduced at chapter 3. With these maps, feasibility checking algorithm is done by first
checking the stepping region of the action for its feasibility. If any grid cell inside the region of the footstep has
bad feasibility or has higher height than 5cm, it is considered as unavailable. If it is available for the footholds, it
now checks about its body collision. For computational reason, body collision of the swinging motion will be
approximated as a sum of ellipses. Finally, two ellipse region is checked for the body collision. One between the

stance foot and new swing foot. Second between the before swing foot and new swing foot. Since the real robot

Region inside foothold Eclipse regions

Figure 2.10 Dual Level Feasibility Checking Methods. Left figure explains the checking region for low obstacles
and rough surfaces. Right figure explains the checking region for higher obstacles
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sways in breadthwise direction, additional interval is considered in the longer axis parameter of the first ellipse.
Assuming that both ellipse has same shorter axis parameter, and since the ellipse between before swing foot and
stance foot will be checked at the before state, checking these two ellipse regions for high height data is enough

for checking the body collision properly.

2.4. Penalizing Heuristic Costs to Reduce Local Minimal problem.

To reduce the local minima problem near the big obstacles, we use some triggering penalty costs for heuristic
cost function. The algorithm works when there is an obstacle in the direction of the new action. If obstacle is
closer than a certain distance is the direction, it gives penalty to the heuristic function so those footholds will be
searched later than the other states. Figure 2.11(a) describes those situations. Additionally the only rotating and
staying still at the same position is less penalized because it is an action to avoid the obstacle. Lastly to avoid the
stepping backwards situation (rotating and staying still action has very little backward moving property), if the
before step was rotating and staying still action with the opposite direction, it is not less penalized, but largely

penalized. Figure 2.11(b) describes those situations.

. . AN
.
! ;\A 1 — ]‘?i 14 -

(@ (b)
Figure 2.11 (a) describes the checking for obstacles in a certain distance in a direction of the new foothold. (b)
describes the high penalty for going backwards
Specifically, it only considers the obstacle until the colliding part through the foot direction because of the
computation problem. Furthermore, it considers the body collision at that point, which is 0.5m interval for our
system. Its specific figure is as Figure 2.13. Heuristic function is penalized with geometrical calculations like

Figure 2.12 and final function is as Equation (15)
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Figure 2.13 Specific figure of the penalized heuristic function.

Goal

ds = /(0.5 + sin(6,))2+(d; — cos(;))?

cos(6,)

d, = /(0.5 +sin(8,))%+

Figure 2.12 Geometrical description of penalized heuristic function.

m'g'F'(92)2+m'g'F'(93)2
N, N, (15)

hpenalized(s) =a-m-g-(dy, +d;3) +
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Finally, our footstep planner is integrated in a single framework. It searches the optimal footstep plan within its
adaptive action set to minimize human inspired energy functions, while avoiding unsteppable situations and

reducing local minimum problems. Overall pseudo code is as Figure 2.14.

Sstart € Set_start(positiongqye, Orientationgg, t)
Sgoar < Set_goal(positiong,q;)
Environment < map_from_data(cameradatas)
openlist « openlist.pushback (Sg¢are )
while
Q <« openlist.pop_minimum_f()
if distance(Q, 500 ) < a then
closedlist « closedlist.pushback (Q)
output_plan <« track _closedlist(Q)
break
end
else then
closedlist « closedlist.pushback(Q)
actionlist « init_actionlist(actionlist)
fori;i < number_of _subset ;it*t
possible_adaptivesets « collisioncheck (Q, adaptivesets)
actionlist « actionlist. pushback(minCOT(possible_adaptivesets))
end
openlist « openlist.pushback (actionlist)
end
end

Figure 2.14 Pseudo code of footstep planning
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Chapter 3. Integrating Framework: Mapping, Planning, Walking

Real time Humanoid Navigation with footstep planning is done in three stages. It first makes a global map
about a global world coordinate, which includes environment data. Next, it makes a footstep plan with the
environment data and its certain cost functions. Finally, with given footsteps, humanoid makes an appropriate
locomotion. To make real time feedback about environment, footstep plan should be updated at least each step.
Step time of our algorithm is fixed as one seconds, so at least, map update and footstep plan update should be
done in one seconds.

Resulting framework and data flows are as Figure 3.1. PODO is our Humanoid’s original software platform
[24]. It stores core data needed for humanoids in shared memory and main walking algorithms are run inside this
platform and is run in a mini PC. Other softwares like mapping and footstep planning is run in a ROS platform,
which is very large and frequently used open platform [25]. It is run in a different computer with GPU integrated.
Robot’s sensor data except camera (encoders and IMU and FT sensors) are directly read in PODO system. These
data are used to make odometry data, which is estimation of robot’s pelvis pose and orientation. Later, odometry
data and encoder data are transferred to ROS platform and are used to generate TF data, which is full coordinates
of each links of the robot about global world coordinate Camera data are directly read in ROS system and are used
to generate point-cloud data. Mapping and filtering packages integrates these data to generate map data. Now,
footstep planner utilized the map, odometry, TF data to generate footsteps and transfers this to the PODO system’s
walking controller. Finally, walking controller generates sufficient motor references to follow the footsteps.

Succeeding contents are detailed explanation of ‘mapping and filtering packages’, ‘Synchronization of footstep
planner and walking algorithm’ and ‘Data transfer methods and data structures’.

Camera ROS
Raw Data Camera Data \

Encoder, Grabber

PODO
4 IMU, FT

7= Robot ~ re— Robot state

publisher
Camera State
Estimation

l ' Mapping
Odometry

Point|cloud

TF

Filtering
\ ) Environment
MaE
Footstep
Planner

N A

Figure 3.1 Data flow of Real time humanoid navigation by footstep planning

Reference Walking Footsteps

l Controller l
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3.1. Elevation Mapping and Filtering

3.1.1. Elevation Mapping [28]

Elevation mapping is an open-source ROS package, which is a robot centered height mapping algorithm. It
needs odometry value and point-cloud data from the camera sensor with TF tree made by encoder values and
odometry. It is based on a probability based filter algorithms. Therefore, camera noise and odometry uncertainties
are considered when mapping is done. In addition, it is a grid based mapping, so the access to the map data is
structured, which accelerates the iterating time of map data structure. Since height-map can only consider 2.5D
environments, in this thesis we will only consider those situations. (Example: not considering multi heights in one
cell.)

Elevation mapping has various parameters to consider, sensor noise model parameters, grid resolution, grid

map size, etc... Each parameters are selected as Table 3.1 and resulting map is like Figure 2.9

Table 3.1 Map parameters

Mapping parameter Value
Map length in x direction 3.0m
Map length in y direction 3.0m

Resolution 0.05m

Minimum Variance 0.1

Maximum Variance 10
Mabhalanobis Distance Threshold 2.5

Multi Height Noise 0.000002

length,
ofs
+ Map center length,

Tracking point

Robot B

resolution

Figure 3.2 Elevation Map Parameters
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3.1.2. Filtering [29]

Resulting map still has some noise, and mapping is not always perfect. Furthermore, as written as Chapter 2,
footstep planner needs not only height values, but also feasibility values of environments to check the footstep
feasibility. In this reason, certain filtering is done to the elevation map like average filtering, normal filtering,
slope filtering, roughness filtering and feasibility filtering. Each filtering result is as Table 3.2. Finally smoothed

elevation map and traversability map values are used for feasibility check in footstep planning.

Table 3.2 Map Filtering Examples

Original

Elevation Map

Average
Filtered Radius : 0.1m

Elevation Map
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Normal Vector
Radius : 0.1m
Map
Slope Map acos(Normal z)
(Original Elevation Map) —
Roughness Map
(Average Filtered

Elevation Map)
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Traversability

Map

0.5* (1.0-(slope/0.6)) +
0.5* (1.0-(roughness/0.1))
*lower threshold: 0.0
*upper threshold: 1.0

3.2. Synchronization of Footstep Planner and Walking Controller

Our humanoid robot uses walking algorithms based on Preview Control [35]. This algorithm plans the reference
motions considering future footsteps, in this reason it needs most recent continuous three steps as input values in
our walking algorithm like Figure 3.3. In addition, to avoid the situations like when robot is on a right foot swing

state, but footstep plan is in left foot swing state, we used some synchronizing step numbers to synchronize

Figure 3.3 Three steps from footstep planner to walking controller needed for preview control

Goal

Three steps




between robot and footstep planner. These step numbers are counted for each steps of real robot like Figure 3.4
and given to the footstep planner. After that, footstep planner returns the plan and that step number. Therefore, if
the both step number is not the same, it means the planner could not give plan before the footstep has changed. In
this situation, we give step on the spot steps for safety. Finally, for situations as if goal node is reachable less than
three steps, we give step on the spot steps for the rest of the steps. In conclusion, our walking algorithm reads the

most recent plan’s three steps, which has synchronized step number.

Initial

Step number=0 Step number=1 Step number=2 Step number=3 Step number=n

Figure 3.4 Step number counting

3.3. Data transfer method: Inside ROS, ROS and PODO

ROS «=—mm
/_ PODO

Direct TCP/IP communication
TCP/IP based internal Through Direct LAN
topic communications

- 7

Figure 3.5 Data transfer methods

Data for the whole frameworks are based on TCP/IP communication. ROS uses TCP/IP based communication
named topic. In addition, data to be transferred between ROS and PODO are transferred by direct TCP/IP

communication through direct LAN cable connection.

3.3.1. Inside ROS

ROS has some essential components, Master, Node, Package, Message, Topic, Publisher, and Subscriber. It
has more components, but above are enough for essential parts in this thesis. ‘Master’ is a kind of main server to
connect node to node and communication with messages. ‘Node’ is a minimum unit processor in ROS. When
node is activated, it sends the name of node, topic, message structure form, URL address, port to the master. Using
these information, each nodes communicates each other with topics. ‘Message’ is a data structure transferred
between nodes. It includes data variables like ‘int’ and ‘double’. ‘Topic’ is a message with a nickname. Publisher

node gives the master the information of the message as a topic, and subscriber node gets the information of the

3.



publisher node from the topic registered in the master. ‘Publish’ means sending the message form data, which is
a content of a topic. ‘Publisher’ node sends the information of itself including the topic information to the master
to publish. Similarly, ‘subscribe’ means receiving the message form data from a publisher. ‘Subscriber’ node also
sends the information of itself including the topic information to subscribe to the master. Using this data, it
receives the data of the publisher node from the master and directly connects to the publisher node to receive the
desired message data.

In our framework, various topics are published and subscribed like Table 3.3

Master

Node 1 Node 2
[ Publisher Topicl Topic2 Publisher ]
[ Subscriber Subscriber ]
Figure 3.6 ROS data transfer between nodes
Table 3.3 Important Topics
Topic Name Update Frequency
Map data 2~3
TF 500
Odometry 500
Camera data 30
Footsteps ~1

3.3.2.  ROS and PODO: TCP/IP

To transfer data to the non-ROS systems like PODO we use direct TCP/IP communication. We made a server
at the PODO system and ROS node named ‘PODO_Connector’ as the client. This node receives certain data from
the PODO and sends certain data to the PODO. Simultaneously it publishes and subscribes those data from other

ROS nodes. Figure 3.7 explains this data transfer. PODO_Connector receives and sends the data like Table 3.4
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Planned Footsteps PODO
ROS <« /7~
5 Step Number -
PODO-Connector ) Server ]
(Client)
il \
Odometry 1
i Sensor Data y
Step Number Other
Other Nodes applications
. J

- J

Figure 3.7 Data transfer by TCP/IP. Server is made in PODO system

Table 3.4 Transferred data between ROS and PODO

Data Transfer frequency
Planned Footsteps ~1
Step number from planner ~1
Odometry 500
Sensor data 500
Step number from robot 500

Integrating the whole features, the whole real time navigation framework is run as Figure 3.8.

Reference

Footsteps Walking

Controller

Footstep
Planner

Mapping Robot

Figure 3.8 Whole Humanoid navigation framework
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Chapter 4. Simulation Results

To validate the frameworks, we first integrated the frameworks with a dynamic simulator. The only difference

with the original framework is that the robot part of Figure 3.1 is exchanged to the simulated robot.

4.1. Gazebo

Gazebo is a dynamics simulator, which is very commonly used with ROS systems, one of our humanoid DRC-
HUBO+ is well simulated in this simulator, so we applied the whole framework with this simulator. DRC-HUBO+
is a humanoid developed for 2015 DARPA Challenge Finals. Its Specification is as Figure 4.1. The robot is
simulated in the Gazebo simulator world with KINECT sensor as the RGBD sensor. Its action cost function

variables are defined as Table 4.1 and kinematic constraints are set as Table 4.2. Finally, Figure 4.2 is an example

of simulation environment and simulated robot.

TABLE 1

SPECIFICATION OF DRC-HUBO+

Height 170 cm
Weight Inc. batteries 80 kg
Exc. batteries T2 kg
DOF Total 32 DOFs
Head 1 DOF
Arm 2 Arms x 7 DOFs
Hand 2 Arms x 1 DOF
Waist 1 DOF
2 Leg 2 Legs x 6 DOFs
- Wheel 2 Wheels x 1 DOFs
Payload Arm 10 kg
Hand (fingertip grip) 2 kg
Hand (encompassing grip) 20 kg
Max walking speed 1.8 km/h
‘Walking cycle 0.8 s/step
Max speed (wheel mode) 3.5 km/h

Figure 4.1 DRC-HUBO+ specification [36]

State estimation, which is an approximation of robot’s position and orientation about global axis, is done by

integrating visual odometry and IMU data.
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Table 4.1 Action Cost Function variables

Energy Cost Function Variable

Value

A

44.0

0.2112

4.0

0.2

0.23

o M |g |0 W

0.4

Table 4.2 Kinematic constraints for simulated robot

Kinematic Constraints Value
Maximum step length 0.40 m
Optimal step length 0.30m
Maximum step width 0.35m
Minimum step width 0.18 m
Maximum step yaw 15 deg

Figure 4.2 Example of simulation environment with simulated robot
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4.2. Results

1) Verification and effect on cost of choosing least COT action as adaptive actions set selecting method.

Selecting the least COT action for the adaptive action set is proposed as a sufficient way to choose action. It is
verified by comparing with choosing farthest action. To satisfy the assumption made in Figure 2.6, goal is selected
to have enough distance from start position. The result is as Figure 4.3. As expected, the least COT selection
method has less cost. This means least COT method is more sufficient way to choose an action from adaptive

action sets for human inspired energetic costs.

kNl
I-\ I.

Farthest Least COT
Cost: 52856.5 Cost: 50657.3

Figure 4.3 Verification of adaptive action set selecting method: least COT

To check if the result is similar in difficult tasks, another result is shown as Figure 4.4. Also, as expected, it

shows similar result. Least COT selecting method gives less cost than selecting farthest action.
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Farthest Least COT
Cost: 56538.4 Cost: 53864.6

Figure 4.4 Verification of adaptive action set selecting method in more complex tasks: least COT

2) Verification and effect on iteration number of heuristic function considering angle difference.

To verify the effect of heuristic function considering angle difference, a task without obstacle and with turning
is given. Situation is as Figure 4.5. One of its result is as Figure 4.6. It has almost same final cost with less iteration.
Furthermore, various tasks which is similar to the one like Figure 4.5 is done and its average result is as Figure

4.7. As expected, almost same optimal solution is planned with 19.7% less iteration.

Figure 4.5 Turning in non-obstacle situation task
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Heuristic with No Angle Heuristic with Angle
Final Cost: 40709.9 Final Cost: 40785.4

[teration: 318 Iteration: 289

Figure 4.6 One example of results for turning

Average cost Average iteration

difference difference

0.41% 19.70% less

Figure 4.7 Various turning situations and its average results

3) Verification and effect on local minimum problems of penalizing heuristic function by geometrical way.

Simplest local minimum problem, which is when big obstacle exists between robot and the goal, is given. The
result without and with penalty on heuristic function is as Figure 4.8. As expected, plan without penalty on
heuristic function could not solve the local minimum problem within maximum iteration number 2000. However,

with the penalty, it was able to make a plan in 617 iterations.
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| I

Heuristic without Penalty ~ Heuristic with Penalty
Iteration: 2000 Iteration: 617

Figure 4.8 Local minimum problem with and without penalty on heuristic function

4) Complex task result

Summarizing all parts, made a full navigation situation like Figure 4.9. It goes through these complex

environments real time.

Figure 4.9 Full navigation simulation with mapping and footstep planning and walking

Furthermore, to check if the full framework is possible in the real robot, experiments for real robot navigation is

done at Chapter 5.
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Chapter 5. Real Robot Experiment

In this chapter, the results for real robot experiment is explained.

5.1. Experimental Setup

5.1.1. KINECT V2 [34]

For real robot, KINECT V2 is selected for the RGBD camera sensor. It is first made at 2014 and it has great
advantage for its high accuracy in indoor situations. (Where there is no sunlight.) Since our experiment will be
done in indoor environments, it is a very suitable sensor for us. It has three kinds of resolution setting for depth
data, hd, ghd, sd. Considering the accuracy and the computation time, ghd resolution is selected for the setting. In
addition, calibration is needed to synchronize between the infrared-based depth and RGB based depth data, where
KINECT V2 uses both data to produce final depth data. Calibration is done by minimizing the sum of difference
of checkerboard data. It is done as below sequence. Finally resulting maps with the KINECT V2 sensor is as

Figure 5.2.

Figure 5.1 Calibrating KINECT V2 with checkerboard.
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Figure 5.2 Example map from Kinect V2 [34] and elevation mapping [28]
5.1.2. Humanoid Platform, Gazelle

‘Gazelle’ is a humanoid robot based on electronic actuators. It is specialized for bipedal locomotion, so it does
not have an arm. Its main feature is that actuators for the ankle is gathered in the upper part to make the inertia

small. Its specifications are as Figure 5.4. Additionally, considering the outer case of the robot, the camera mount

is added like Figure 5.3. Its kinematic constraints are set as Table 5.1.

TABLEI
£ — SPECIFICATION OF GAZELLE
Height 130 cm
» Weight Inc. battery 37kg
ot ,l._,' Exc. battery 33kg
[
ap Total 13
59 | I DOF Leg 2legs x 6 DOF
o ™ .
8 | & X Waist 1 DOF
- i l v r Ja Sensors IMU (gvro and accelerometer), F/'T sensor
<OIA
04 IR - Max walking speed 1.8kmh

P

Figure 5.4 Specification of humanoid robot Gazelle

Figure 5.3 Camera mount to combine Gazelle and Kinect V2
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Table 5.1 Kinematic constraints for real robot

Kinematic Constraints Value
Maximum step length 0.30 m
Optimal step length 0.20 m
Maximum step width 0.35m
Minimum step width 0.18 m
Maximum step yaw 15 deg

In the real robot experiment, state estimation is done by kinematic information and IMU and FT sensor. It is

because, visual odometry was too noisy than the simulation.

5.2. Real Robot Experiment Results

Experiment is taken in two scenarios. First one is a dynamic obstacle scenario. Robot is given to go to a goal
in a straight direction, but suddenly a person gets in front of the robot. To get through the person, robot should
solve local minimum problem in real time and finally get to the goal. Second one is a small object and large object
scenario. Robot should get through a complex terrain map, which includes small obstacles and large obstacles. It

solves the plan utilizing its adaptive action sets and finally reaches the goal while satisfying its feasibility condition.
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1) Dynamic obstacles

Figure 5.5 Dynamic obstacles experiment results in real robot.
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2) Small and large obstacles.

Figure 5.6 Small and large obstacles experiment results in real robot.
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During the experiment, whole framework was run in real time to make it available to deal with dynamic
obstacles. However, it had difficulties for environments which is out of FOV. This can be further improved

by utilizing larger FOV sensors or, moreover, multiple sensors.
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Chapter 6. Conclusion

6.1. Conclusion

This thesis reviewed the history of humanoid navigation by footstep planning and proposed a framework that
integrates adaptive action sets with human locomotion energy approximations by proposing a selection method
by least COT. Furthermore, iteration time is reduced by setting heuristic cost function closer to the maximum
limit for admissibility by considering angle difference in heuristic function. For the feasibility checking problem,
dual level feasibility checking method is proposed, which utilizes footstep regions and ellipse regions.
Furthermore, local minimum problem is reduced by penalizing heuristic functions about future obstacle collision.
Finally, integrating framework for mapping, footstep planning, walking is introduced and verified not only in

simulation, but also in real robot.

With these frameworks, humanoid navigation considering not only reaching the goal, but also human like
energy efficiency is able. It is much desirable point of view in humanoid navigation, since it moves in a different
way compared to the mobile robots. Also in a practical point of view, implementing real time navigation was able
thanks to the various methods which minimizes computational effort while maximizing the essential effects.
Although there exists more complex and desirable algorithms, real robot cannot be driven in real time with those

methods.

Thus, author insists the framework introduced in this thesis is well integrated with computationally efficient
methods while having philosophy that humanoid navigation should consider not only the distances, but also

energy consumptions.

6.2. Future work

Currently used mapping algorithm is too slow due to its heavy computational effort and this makes the
integrated map slow and wavy. In this reason, another mapping algorithm with less effort could replace the one

used in this thesis.

Also, utilizing the environment data, real time obstacle feedback to walking algorithm may be possible.
Currently footstep planner only makes desired footsteps. However, with the environment data, feedback can be

done to the walking stabilizer to stabilize itself considering obstacles.

In addition, other precise collision checking methods could be considered which is not computationally heavy.
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Finally, state estimator, which integrates visual odometry and kinematic odometry, can be adapted for more

accurate state estimation.
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Appendix
A. Proofthat E,pge is proportional to 82 for trajectory with trigonometric functions.

In order to have no discontinuous acceleration profile, frequently used trajectory plan is to utilize trigonometric
functions. Also, since our system has constant step time, trajectory plan can be done as Equation (16). In the

equation, Oges is the desired yaw angle difference for a step and Ty is the constant step time. One example

of those trajectory is plotted as Figure A.1.
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Figure A.1 Example of trajectory plan by trigonometric functions

If we assume that foot yaw movement can be expressed as a single load rotating in a yaw direction like Figure
A.2. To make a movement that follows the trajectories like Equation (16), actuator needs to output torque as same

as inertial torque regarding friction. Therefore, it consumes energy as Equation (17). After calculation, it is able

to find out that it is proportional to 63,;.
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Figure A.2 Foot yaw movement assumed as a rotating single load
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